一道高数题,罗尔定理的设f(x)在(0,1]三阶可导且f(0)=f(1)=0,求证F(x)=x²f(x)在(0,1)内存在一点c使F在c点的三阶导数等于0。

来源:学生作业帮助网 编辑:作业帮 时间:2021/09/28 15:50:44

一道高数题,罗尔定理的设f(x)在(0,1]三阶可导且f(0)=f(1)=0,求证F(x)=x²f(x)在(0,1)内存在一点c使F在c点的三阶导数等于0。
一道高数题,罗尔定理的
设f(x)在(0,1]三阶可导且f(0)=f(1)=0,求证F(x)=x²f(x)在(0,1)内存在一点c使F在c点的三阶导数等于0。

一道高数题,罗尔定理的设f(x)在(0,1]三阶可导且f(0)=f(1)=0,求证F(x)=x²f(x)在(0,1)内存在一点c使F在c点的三阶导数等于0。

什么问题啊。都没说呢

一道高数题,罗尔定理的设f(x)在(0,1]三阶可导且f(0)=f(1)=0,求证F(x)=x²f(x)在(0,1)内存在一点c使F在c点的三阶导数等于0。 一道高数微分中值定理不等式证明题设x>0,证明:ln(1+x)>(arctanx)/(1+x).在用柯西定理证明的时候,令f(x)=(1+x)ln(1+x),g(x)=arctanx,但是x明明是大于0的,为什么可以对[f(x)-f(0)]/[g(x)-g(0)]应用柯西定理?x 求助一道中值定理的题目.设f(x)在[0,1]上连续,在(0,1)内可导,且f(0)=0,试证ξf'(ξ)+2f(ξ)=f(ξ) 一道大一高数,关于罗尔定理,或拉格朗日中值定理.设f(x)在[0,1]上连续,在(0,1)内可导,且f(1)=0.证明:在(0,1)内存在一点ε,使得f(ε)+(1-e^(-ε))f’(ε)=0. 考研数学中值定理的一道题设f(x)在【0,1】上具有连续导数,且f(0)=0,f′(1)=0.求证:存在ξ∈(0,1)使得f'(ξ)=f(ξ) 一道关于微分中值定理的证明题求解是一道关于微分中值定理的证明题,题目:设函数f(x)在区间[0,3]上连续,在(0,3)内可导,且f(0)+ f(1)+ f(2)=3,f(3)=1,试证必存在ξ在(0,3)内,使f(ξ)=0.哪位大 一道大一高数,关于罗尔定理,或拉格朗日中值定理设函数f(x)在[0,π/4]上连续,在(0,π/4)上可导,且f(π/4)=0,证明:存在一点c∈(0,π/4),使得2f(c)+sin2c×f‘(c)=0 一道简单的高数题,急用,有劳各位了,设f(x)在(0,a)上连续,在(0,a)上可导,且f(0)=0,f'(x)单调增加,试证明:f(x)/ x在(0,a)上单调增加.(提示:lagrange定理证明) 微积分题请各位楼主微积分解答一下1.设f(x)=ln(x+1),求f(x 2 -2)-f(x-2).2.设 y=tan 2 1/x,求 y.3.设y=(1+x 2 )arctanx,求y〃,y〃/x=1 4.验证函数f(x)=x 3 +x 2 在区间【-1,0】上满足罗尔定理的条件,并求出定理中的 微分中值定理的一道题设f(x)和g(x)都是可导函数,且|f'(x)| 问一道关于微分中值定理的数学题设函数f(x)在[0,1]上连续,在区间(0,1)上可导,且有f(1)=2f(0),证明在(0,1)内至少存在一点m,使得(1+m)f'(m)=f(m)成立.要用微分中值定理来做, 问一道高数题,函数f(x)在[0,1]上连续,(0,1)上可导,f(0)=0,f(1)=1证明对任意正数a,b存在不同的η、ξ使得:应该用拉格朗日中值定理和罗尔定理 一道微分中值定理题目若函数f(x)在[0,1]连续,在(0,1)可导内有二阶导数,f(0)=0,F(x)=(1-x)^2f(x),证明:在(0,1)内至少有一点ξ,使得F''(ξ)=0.这个题目很明显F(1)=F(0)=0,由罗尔中值定理很容易得到,存在ξ, 罗尔定理证明题 谢1.设 f ( x ) 在 ( −∞ ,+∞ ) 上可微 ,且 f ′( x ) ≠ 1,试证明方程 f ( x ) = x 最多有一个实根 .2.设 f ( x )可导 ,求证 :f ( x )的两个零点间一定有 f ( x ) + f ′( x )的零点 . 拉格朗日中值定理:设f(x)=x的3次方,已知其在闭区间[0,1]上满足拉格朗日中值定理,求ξ 涉及到使用零点定理的一道高数证明题,设f(x)在[a,b]上连续,f(a)=f(b),证明,存在Xo属于(a,b),使得f(Xo)=f(Xo+(b-a)/2) 一条高数题,有关中值定理的设函数f(x)在[0,1]上可导,对[0,1]上每一个x,有0 与拉格朗日定理有关的一道证明题设f(x)在[0,2]上连续.在(0,2)内可导.且f(0)=f(2)=0,f(1)=2,c在(1,2)内,f(c)=c.求证:存在ξ属于(0,c),使f'(ξ)-c[f(ξ)-ξ]=1